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a b s t r a c t

Many palmprint authentication approaches have been proposed in recent years. Among them, the
orientation based coding approach, in which the dominant orientation features of palmprints are
extracted and encoded into bitwise codes, is one of the most promising approaches. The distance
between codes created from two palmprint images is calculated in the matching stage. Reliable
orientation feature extraction and efficient matching are the two most crucial problems in orientation
based coding approaches. However, conventional coding based approaches usually extract only one
dominant orientation feature by adopting filters with discrete orientations, which is sensitive to the
noise and rotation. This paper proposed a novel double-orientation code (DOC) scheme to represent the
orientation feature of palmprint and designed an effective nonlinear angular matching score to evaluate
the similarity between the DOC. Extensive experiments performed on three types of palmprint
databases demonstrate that the proposed approach has excellent performance in comparison with
previously proposed state-of-the-art approaches.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biometric authentication is becoming more and more popular
because it is an important and effective technology for personal
verification and identification [1–4]. In palmprint authentication,
the palmprint is defined as the inner surface of a hand. It contains
many stable and discriminative features, including not only
principal lines and wrinkles but also abundant ridges, minutiae,
and textural features [5–7]. Thus the palmprint based authentica-
tion approach is able to achieve reliable personal verification and
identification. In recent years, the palmprint recognition approach
has received increasing research interests and various palmprint
recognition algorithms have been presented [8–12] based on
different kinds of palmprint features. For example, Huang et al.
[13] proposed a principle line based approach for palmprint
verification. Dai et al. [14] presented a ridge-based palmprint
matching algorithm, which quantitatively investigates the ridge
features of high resolution palmprint images and calculates the
statistics of ridge features. Morales et al. [15] introduced the scale
invariant feature transform (SIFT) based approaches to perform
palmprint recognition. The key points of palmprints obtained

using SIFT are that they are robust to the image illumination,
scaling and rotation variance. Liu et al. [16] proposed a minutiae-
based palmprint matching algorithm based on minutiae clustering
and minutiae match propagation. Li et al. [17] designed a palm-
print recognition approach based on the fusion of 2D and 3D
palmprint features. They first extracted correlated features from
2D and 3D palmprint images. Then, these features were fused at
the feature level to achieve satisfactory recognition accuracy.
Zhang et al. [18] supplied a multi-spectral palmprint recognition
approach which captured palmprint images under red, green, blue,
and near-infrared light. These spectral features were combined at
the matching score level to improve the performance of palmprint
identification. In addition, the subspace based approaches, such as
the Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) [7–9], and the Representation Based Classification
(RBC) approaches, such as CRC [19] and TPTSSR [20], can also be
exploited for palmprint authentication [21].

Besides the above approaches, orientation based coding
approaches are deemed to be the most promising palmprint
recognition approaches, since the palmprint is full of line and
textural features which carry rich and distinctive orientation
information. Zhang et al. [22] proposed an effective Palmcode
approach that applied a normalized 2-D Gabor filter to the
palmprint image and encoded the filter results as code repre-
sentation. Inspired by the Palmcode approach, Kong et al. [23]
proposed the Competitive code approach which adopted six
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Gabor filters to extract the dominant orientation features of
palmprints based on the principle of the biggest response. Similar
to Competitive code method, the Robust Line Orientation Code
method (RLOC) [24] extract orientation by using a Modified Finite
Radon Transform (MFRAT). Based on the idea of the Competitive
code, Zuo et al. [25] designed a novel Sparse Multiscale Compe-
titive Code (SMCC) approach to extract more accurate orientation
features by using a bank of multiscale Gabor filters and employ-
ing a winner-take-all rule. Subsequently, Kong et al. [26] pro-
posed a fusion code approach that encoded the phase with
dominant magnitude from four orientation's Gabor filter results.
Sun et al. [27] employed three groups of orthogonal Gaussian
filters to extract three binary codes, i.e. the ordinal code, in terms
of the sign of the filter results. To further extract more orientation
features, Guo et al. [28] proposed a Binary Orientation Co-
occurrence Vector (BOCV) approach, which obtained all six
orientations by convolving the palmprint image with six Gabor
filters and encoded all filter results as orientation features. Zhang
et al. [29] had improved the BOCV to E-BOCV by making out the
fragile bits to further improve the performance of palmprint
recognition.

It is well known that the winner-take-all rule, which extract the
single orientation with the largest filter response [23], is usually
used in the orientation based coding methods. However, in real
operations, a bank of Gabor filters with discrete orientations is
used to convolve with palmprint. It is possible that no any filter
that has the same orientation as palmprint line and no filter can
achieve the absolute maximum of filter response. Actually, the
palmprint line usually coincides with two filters, which have larger
responses than other filters in most conditions. So double-
orientation feature with top-two largest responses is more reason-
able than the single-orientation extraction, and it is robust to the
noise and rotation.

In this paper, a robust double-orientation code (DOC) approach
for palmprint recognition is proposed. First, the paper studies the
rationale of the palmprint orientation based coding theory and
concludes that the DOC is highly reliable and reasonable for
palmprint orientation feature representation. Second, the paper
presents an effective nonlinear angular matching score metric for
the similarity evaluation of DOC. Finally, extensive experiments on
three types of palmprint databases are performed to examine the
effectiveness of the proposed approach. The extensive experimen-
tal results show that the proposed approach can achieve higher
verification and identification accuracy than conventional state-of-
the-art coding algorithms.

The remainder of this paper is organized as follows: Section 2
briefly describes the main orientation based coding approaches.
Section 3 presents the analysis of the double-orientation extrac-
tion. Section 4 introduces the double-orientation code based
nonlinear matching scheme for palmprint recognition. In Section
5, experiments of the proposed approach are supplied and
analyzed. Finally, Section 6 offers the conclusion of this paper.

2. Related works

2.1. Principal line based approach

Palmprint lines are the basic feature of a palmprint, and line
based recognition approaches play an important role in palmprint
authentication. The principal line based approaches use a line or
edge detector to extract the palmprint lines and then use them to
perform palmprint recognition. In general, palms have three
principal lines which are the most evident lines in the palmprint
image and have stable shapes and positions. Thus the principal
lines are highly robust to noise and illumination. Palmprint
principal lines can be extracted by using the Gobal filter, Radon
filter, Sobel operation. Fig. 1 shows some principal line images
extracted by using MFRAT approach [13].

In the matching stage, the similarity is simply evaluated in
terms of the number of the overlapping pixels of two palmprint
principal lines. A recommended matching approach of principal
lines is the pixel-to-area [14] matching approach, which calculates
the principal line matching score as follows:

SðA;BÞ ¼
Xm
i ¼ 1

Xn
j ¼ 1

Aði; jÞ \ Bði; jÞ=NA; ð1Þ

where A and B are two palmprint principal line images, “\”

represents the logical “AND” operation, NA is the number of pixel
points of A, m and n are the row number and column number of
the palmprint image, and Bði; jÞ represents a neighbor area of Bði; jÞ.
The larger the matching score means the greater similarity
between A and B.

The principal lines are one of the most stable features of a
palmprint. However, using only principal lines is not adequate to
represent the uniqueness of a palmprint because different indivi-
duals may have similar principal lines. Thus, the recognition
accuracy may be low. Moreover, simple using principal line means
that many discriminative minutiae are discarded.

2.2. Coding based approaches

In addition to the principal line based approach, the coding
based approaches are the most promising methods for palmprint
recognition. One or several filters are used to extract palmprint
orientation features and these features are then converted into
codes. The distance between codes is calculated to perform palm-
print recognition. The representative coding based approaches
include the Competitive code, Palmcode, Ordinal code, Fusion code,
RLOC, BOCV, and E- BOCV approach, and so on.

The Competitive code approach [23] is one of the most popular
coding based approaches. Six Gabor filters with different orienta-
tions are used to extract orientation features from a palmprint. The
orientations are finally determined as jπ=6, wherej¼ f0;1; :::;5g. Six
orientation’s Gabor templates are convoluted with the palmprint

Fig. 1. Palmprint images and theirs principal line images: (a), (b) are two palmprint images from two subjects and (c), (d) are palmprint principal line images of (a), (b).
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image. The final orientation is the orientations with the greatest
response principle. It takes the orientation index jðj¼ 0;1; :::;5Þ as
the competitive code. The angular distance metric is used for
comparing two competitive codes. The angular distance is based
on the following rules: the distance between parallel orientations is
0, the distance is 1 when the angles of the two orientations are π=6
or 5π=6, the distance is 2 when the angles of the two orientations
are 2π=6 or 4π=6, and the distance between perpendicular orienta-
tions is 3. For effective calculation, the index competitive code can
be represented by three binary codes via the rule in [23]. Then the
hamming distance can be used to measure the similarity between
two competitive codes:

DðP;Q Þ ¼

PN
y ¼ 0

PN
x ¼ 0

P3
i ¼ 1

ðPiðx; yÞ \ Qiðx; yÞÞ

3N2 ; ð2Þ

where PiðQiÞ is the ith bit binary code plane and “\” is the logical
“AND” operation. The value of hamming distance representatives
the similarity between two code plane.

Compared with the competitive code approach, the palmcode
approach [22] uses only the optimal 2D Gabor filter with orienta-
tion of π=4, including the real part and the imaginary part, to extract
palmprint textural features. The fusion code approach [26] uses four
complex Gabor filters with orientations of jπ=4ðj¼ 0;1;2;3Þ to
extract palmprint orientation features. The phase with the largest
response magnitude of the four filters is converted into a pair of
binary codes. The similarity between palmcode and fusion codes is
calculated by using the normalized hamming distance. In order to
obtain more orientation information, the BOCV approach [28] uses
the same six Gabor filters as in the Competitive code approach to
convolve with palmprint image. All six orientation features are
encoded into six codes, which are joined to calculate the hamming
distance between the testing image and training image. Zhang et al.
[29] extended the BOCV to E-BOCV by incorporating fragile bits
information. In the E-BOCV, fragile bits in BOCV are extracted and
excluded from the BOCV matching. And a code map based metric is
designed for the fragile bits similarity evaluation, which is fused
with BOCV matching in score level fusion.

Similar to the Competitive code approach, the robust line
orientation code (RLOC) approach [24] adopts the MFRAT instead
of Gabor filter to extract orientation code. The RLOC encodes a
pixel as 1 when it is in a certain principal line; otherwise, the RLOC
encode the pixel as 0. The pixel-to-area rule is used for the RLOC
matching.

Inspired by the ordinal measurement, Sun et al. [27] proposed
the Ordinal code approach, which uses three groups of integrated
perpendicular 2D Gaussian filters to convolve with palmprint
image. The signs of filtering results are encoded into three ordinal
codes, and the sum of three bitwise hamming distances is
computed for the similarity evaluation between the query and
gallery palmprint.

Both Competitive code and Fusion code methods extract the
single-orientation base on the rule of winner-take-all [23] that
extract the orientation of filter that has the largest filter response
with palmprint. The rule of the orientation extraction in the RLOC
method is also similar with that of the Competitive code method. It
based on the theory that the filter response will reach the maximum
when the filter orientation is consistent with that of the palmprint
line. However, in real operations, the adopted orientations of filters
are discrete. It is possible that no any filter has the orientation of the
palmprint line and has the absolute largest response in most
conditions. So the single-orientation extraction based on the
winner-take-all rule may be unstable. This motivated us to explore
a more reasonable orientation based coding approach.

3. Double-orientation feature extraction

The orientation based coding approaches usually based on the
assumptions that each pixel in palmprint belongs to a line and the
filter response will reach the maximum when the orientation of
the filter is consistent with the line orientation [15]. However, in
real operations, the orientations of filters are discrete. So the
orientation of filters is not exactly consistent with the line
orientation in most conditions. This means that the “winner-
take-all rule” may not extract the orientation feature correctly.

To investigate the stability of the “winner-take-all rule”, six
Gabor filters with orientations of jπ=6 ðj¼ 0;1; :::;5Þ were chosen
to perform convolution with palmprint images. Then the top-two
responses, i.e. the largest response and the second-largest
response, were compared. Palmprint images were selected from
the PolyU palmprint database and the multispectral databases,
which will be introduced in detailed in next section. In each
database, 100 palmprint images from different palms were
selected and each image was normalized to 64�64. There were
4096 pixels in one image and 4096�100¼409,600 pixels in 100
images. Each pixel was convolved with six Gabor filters and the
discrepancy between top-two largest responses was calculated.
The distribution of discrepancy is shown in Fig. 2(a). The x-axis is
the pixel distribution and the y-axis represents the top-two largest
response discrepancy. It was found that there are many points
having very similar top-two largest responses.

The discrepancy-ratio, which is the ratio of the discrepancy to
the largest response, was introduced to represent the close degree
between the top-two responses. A smaller discrepancy-ratio means
a higher similarity between two largest responses. Fig. 2(b) and (c)
shows the distribution of the “pixel percentage” and “percentage-
summation” with the discrepancy-ratio of PolyU palmprint data-
base. Fig. 2(d) shows the “percentage-summation” distributions on
four spectral palmprint databases. The curve in Fig. 2(d) shows that
the discrepancy-ratios are smaller than 0.1 for about 50% of pixels
and smaller than 0.05 for about 30% of pixels. This means that a
large number of pixels have very close top-two responses.

Fig. 3(a) shows a palmprint image and (b) shows the distribu-
tion of the pixel whose “discrepancy-ratio” is smaller than 0.02.
One pixel is selected to convolve with six Gabor filters and the
results of six filters are also shown in the figure. The largest
responses is 2.9018 corresponding to an direction of π=6. Then we
add only 0.02% “salt & pepper” noise in the palmprint image. It can
be found that the largest response of the pixel changes to 2.9102
with direction of 0 as shown in Fig. 3(c). This indicates that the
orientation of the largest response is changed after little noise is
imposed. Furthermore, Fig. 3(d) shows that one area of the
palmprint image (a) is rotated by 31 of counter-clock. The largest
response of the pixel marked in the figure is 4.2523 with a
direction of π=6 before the rotation, and it becomes 4.2525 with
a direction of π=3 after the rotation. Thus, the single-orientation
based on the rule of the largest filter response is sensitive to the
noise and rotation.

The single orientation of filter that has the largest filter response
will be treated as the orientation feature of palmprint in several
orientation based coding approaches. This is deemed to be reason-
able because of the fact that the filter response will reach the
maximum when the filter orientation is consistent with the
orientation of palmprint line. However, it is possible that no any
filter has the exactly consistent orientation with palmprint line and
no filter can achieve the exact maximum of filter response in most
conditions. Because only limited discrete orientations (in most
approaches there are six orientations) of filters are adopted in real
operations. Actually, the palmprint line usually coincides with two
filters, as shown in Fig. 4, which usually have larger responses than
other filters. In other words, for orientation extraction by using
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Fig. 2. Top-two response distributions on PolyU palmprint database: (a) and (b) are the largest two response distributions, respectively; (c) is the discrepancy of the top-two
responses; and (d) and (e) are the percentage and percentage-summation distributions with the discrepancy-ratio, respectively.

Fig. 3. The top row shows the effect on the response of the noise: (a) is the original palmprint image; (b) depicts the filter responses of one pixel whose “discrepancy-ratio” is
less than 0.05; (c) depicts the filter response of the pixel after 0.02% noise is added to the palmprint image (a); and (d) depicts the change of largest response caused by the
rotation.
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discrete orientations of filters, the most possible orientation of
palmprint line usually coincide with two orientations of filters and
the use of a single filter cannot well model it. Therefore, the double-
orientation feature extracted based on the top-two responses
should be more reasonable than the single-orientation extraction.
Moreover, the double-orientation feature with top-two responses,
which is stable even there is little noise or rotation in the palmprint,
is more robust than single-orientation.

4. Double-orientation crossing matching scheme

Filter-based approaches are widely used to perform feature
extraction of a palmprint such as principal line extraction, texture
orientation abstraction and edge detection. Generally there are
three kinds of filters, i.e. Gabor filter, Randon filter, Gaussian filter
[2], and Riesz transform [30], which are usually used for the
extraction of palmprint orientation features. Each filter has its own
advantages. Of them, the Gabor filter is widely used for extracting
orientations or edge information from images [31,32]. Xue et al.
[33] compared the performance of the coding based palmprint
recognition approaches by using different filters and concluded
that the Gabor filter has better performance than other filters.
Furthermore, the Gabor filter has good properties of the 2-D
spectral specificity of texture as well as its variation with 2-D
spatial position. We used the Gabor filter to extract orientation
features of palmprint in our approach.

4.1. Revised Gabor filter

The Gabor filter has the following general form:

Gðx; y; θ; μ; σ; βÞ ¼ 1
2πσβ

exp �π
x02

σ2
þy02

β2

� �� �
expði2πμx0Þ; ð3Þ

where x0 ¼ ðx�x0Þ cos θþðy�y0Þ sin θ, y0 ¼ ðx�x0Þ sin θþðy�
y0Þ cos θ. ðx0; y0Þ is the center of the function, μ is the radial
frequency in radians per unit length, θ is the orientation of the
Gabor function in radians, and σ and β are the standard deviations
of the elliptical Gaussian along x and y axis, respectively. The
ranges of x and y are the sizes of the filter and i¼

ffiffiffiffiffiffiffiffi
�1

p
. Similar to

the Competitive code approach, the real part of the Gabor filter is
applied to extract the orientation feature of the palmprint. The
Gabor filter response at an orientation can be treated as confident
features occurring at that orientation [32]. Lines are a small-scalar
part of the palmprint image [22]. So the real part of the Gabor filter
should be transferred to “upside-down” form for more accurate
orientation feature extraction. So the largest response means the
lowest convolved value. The transformed Gabor filter is defined as

~G ¼ 1
2πσβ

1�exp �π
x02

σ2
þy02

β2

� �� �
cos ð2πμx0Þ

� �
: ð4Þ

A set of optimal parameters are set in the Gabor filter according to
[13]. These parameters are μ¼0.0916, and σ¼β¼5.6179. θ is
jπ=nθðj¼ 0;1; :::;nθ�1Þ, where nθ , which is usually even, is the
orientation number used in the adopted Gabor filters. nθ is set to
6 in this paper generally. Fig. 5 shows the appearance of the
revised Gabor filter with orientation θ¼0. The revised Gabor filters
are used to perform orientation feature extraction of the
palmprint image.

4.2. Palmprint preprocessing

All palmprint images are preprocessed before palmprint recog-
nition. This step extracts the central region of a palmprint for
accurate matching. In our method, the most representative
method proposed in [22] is employed to extract the Region of
Interest (ROI) of a palmprint. This method uses gaps between
fingers as reference points to determine the ROI of a palmprint. At
first, we use the low-pass Gaussian filter to convolve the original
palmprint image to convert the convolved image into a binary
image by thresholding. Then, we obtain boundaries of the binary
image using a boundary tracking algorithm and extract the land-
marks based on the boundaries, where the landmarks are at the
bottom of gaps between index and middle fingers and between
ring and little fingers. Third, we locate the perpendicular bisector
of the line segment between two landmarks to determine the
centroid of the palmprint region. Finally, we extract the normal-
ized subimage of a fixed size, i.e. 64� 64, as the ROI, which is
located at a certain area of a palmprint and used for the palmprint
feature extraction. Fig. 6 shows a procedure of the ROI extraction
of a palmprint image.

4.3. Double-orientation extraction algorithm

The revised Gabor filters are used to extract double-orientation
feature for all pixels in the palmprint image. Let ~Gj be the ~G with
orientation of jπ=nθ , where j¼ f0;1; :::;nθ�1g and nθ is the number
of Gabor filters. ~Gjðj¼ 0;1; :::;nθ�1Þ are employed to convolve each
pixel of the palmprint image:

Rjðx; yÞ ¼ ~Gj � Iðx; yÞ; ð5Þ

where I is the palmprint image, Iðx; yÞ is the gray scalar of location
ðx; yÞ in the palmprint image, and “�” is the convolve operation.
All pixels in the image need to convolve with the filter. Rjðx; yÞ is
the filter result of Iðx; yÞ with ~Gj. The orientations with the most
two dominant filter results are extracted as the dominant

Fig. 4. The palmprint line usually coincides with two filters in most conditions.

Fig. 5. The appearance of the revised Gabor filter with orientation of θ¼0.
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orientation features:

½Opðx; yÞ;Osðx; yÞ� ¼ arg min
j1 ;j2

Rjðx; yÞ; j¼ f0;1; :::;nθ�1g; ð6Þ

where j1 and j2 are two indices of the two most minimum filter
responses. In other words, Opðx; yÞ and Osðx; yÞ are the two indices
of the two most minimum filter responses among Rjðx; yÞðj¼
0;1; :::;nθ�1Þ. We refer to ðOp;OsÞ as the double-orientation
code (DOC).

4.4. Double-orientation nonlinear matching

In this subsection, the proposed DOC based nonlinear match-
ing scheme is presented. The hamming distance is widely used to
calculate the similarity between two palmprint images in coding
based approaches. For example, the Palmcode, Fusion code, and
Ordinal code approaches all use the hamming distance in the
matching stage. The Competitive code approach proposes an
angle distance for palmprint recognition, which is equivalent to
the sum of three bitwise hamming distances. Guo et al. [33]
proposed the unified formula of hamming distance metric. The
hamming operation result is 0 if the corresponding bits are the
same, otherwise, the result is 1. If two corresponding bits of two
series are different, they are referred to as a pair of different bits.

The final matching result is the sum of hamming results of a
series of binary codes. So the hamming distance metric is linear
with respect to the number: the pairs of different bits of two
series.

To increase the discrimination, a nonlinear angular matching
score approach is proposed to evaluate the similarity of DOC. In
the orientation matching stage, only superior similarity between
orientations can acquire a high matching score. When the orienta-
tion difference reaches the maximum, the matching score should
be a small enough value. The nonlinear matching approach based
on “single-orientation code” is defined as

ori_scoreðcode_disÞ ¼ 1

ekncode_dis
ð7Þ

and

code_dis¼ min Od�Ot
		 		; nθ� Od�Ot

		 		
 �
; ð8Þ

where Od and Ot are two “single-orientation code”, and k is the
parameter. The perfect matching score is 1 when two “single-
orientations code” are the same (The code distance code_dis¼0).
The ori_score should be smaller than ξ, which is a small enough
value, when distance of two “single-orientations code” reach the

Fig. 6. The ROI extraction of a palmprint image: (a) the input palmprint image and (b) the extracted ROI of the palmprint image.

Fig. 7. The matching score obtained using the proposed approach and hamming distance metric: (a) shows the variation of the matching score with the angular distance and
(b) shows the variation of the hamming distance with a number of different bits.
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maximum nθ=2. In other words,

1

eknðnθ=2Þoξ; ð9Þ

So

k4
2
nθ

ln
1
ξ
; ð10Þ

where ξ is empirically set as 0.01 in this paper. k¼1.6 is acceptable
when nθ¼6, andk¼1 is accredited when nθ¼12. Fig. 7(a) shows
nonlinear matching scores against the code distance with nθ¼12
and nθ¼6, respectively. Comparatively, Fig. 7(b) depicts the varia-
tion of the hamming distance with the number of bits.

For double-orientation code matching score calculation, two
crossing matching scores based on code difference are defined as

p1_scoreði; jÞ ¼ ori_scoreðcode_disppÞþori_scoreðcode_disssÞ; ð11Þ
and

p2_scoreði; jÞ ¼ ori_scoreðcode_dispsÞþori_scoreðcode_disspÞ; ð12Þ
where

code_disαβ ¼ minðjOi
α�Oj

β j ; nθ�jOi
α�Oj

β j Þ ðα; β¼ p; sÞ: ð13Þ

In particular, Oi
p and Oi

s are denoted as DOC of ðOp;OsÞ extracted
from palmprint image i. code_disαβ is the code distance of two
pixels from palmprint images i and j. code_disαβ is in the range of
f0;1; :::;nθ=2g. We define the larger of p1_score and p2_score as the
final matching score of two DOCs:

p_scoreði; jÞ ¼ maxðp1_scoreði; jÞ; p2_scoreði; jÞÞ: ð14Þ
The corresponding DOC based crossing nonlinear matching

scores are shown in Table 1. The perfect matching score is 1 when
two DOCs are same. If only single sub-orientation-codes of two
DOCs are the same, the final matching score will be larger than 0.5,
otherwise (two DOC are absolutely different), the final matching
score will be equal to or smaller than 0.2019.

The final matching score of two palmprint images is computed
as:

matching_scoreðA;BÞ ¼

PM
i ¼ 1

PN
j ¼ 1

p_scoreði; jÞ

2MN
; ð15Þ

where M and N are respectively the row number and column
number of the palmprint image. The MN is the pixel number of the
palmprint image. A and B are two palmprint images. The perfect

matching score is 1 when corresponding DOCs of two palmprint
images are same.

The procedure of the palmprint matching score calculation is
demonstrated in Fig. 8. DOC is first extracted from each pixel of
two palmprint images. Four ori_scores, which are obtained from
DOCs of two pixels, are used to calculate thep1_score and p2_score.
The final match_score is a normalized summation of the maximum
of p1_score and p2_score obtained using (16).

5. Experimental results

In this section, a series of experiments was performed to
estimate the performance of the proposed approach on three types
of popular palmprint databases: including the left and right
palmprint database, the multispectral palmprint database [34],
and the IITD database [35]. Several state-of-the-art coding based
approaches were implemented to compare with the DOC approach.

5.1. Palmprint databases

The left and right palmprint database was provided by the
Hong Kong Polytechnic University (PolyU) [34]. It contained 3740
palmprint images collected from 187 different volunteers, where
10 right palmprint images and 10 left palmprint images were
captured for each subject. Thus the palmprint database used
contained 374 classes and each class had 10 palmprint images.
Hereafter the left and right palmprint database is referred to as the
PolyU database.

The multispectral palmprint database contained four indepen-
dent spectral palmprint databases, including the Red spectrum,
Green spectrum, Blue spectrum, and Near Infrared (NIR) spectrum
palmprint databases [34]. Each of them was collected by PolyU
from 500 palms of 250 subjects, including 195 males and 55
females. The age distribution was from 20 to 60 years old. The
palmprint images were collected in two separate sessions with a
time interval about 9 days. In each session, the subject was asked
to provide 6 images for each palm. Therefore, 24 images of each
illumination from two palms were collected for each subject. In
total, the database contained 6000 images from 500 different
palms for one illumination. Thus, each spectral database had 500
classes and each class had 12 palmprint images.

The public IITD palmprint database [35] is a contactless based
palmprint database. Images in the IITD database were captured in
the indoor environment, and contactless hand images were
acquired by a camera with variations in pose, projection, rotation
and translation. The main problem of contactless databases lies in
the significant intra-class variations resulting from the absence of
any contact or guiding surface to restrict such variations. The IITD
database consists of 2300 hand images from 230 subjects. Five
hand images were captured from each of the left and right hand of
each individual in every session. So there were 460 different
classes of palmprint images and each class had 5 palmprint
images. In addition to the original hand images, the ROI of

Table 1
Crossing nonlinear matching scores of DOC (the maximum code distance is 3).

DOC distance 0 1 2 3

0 1 0.6010 0.5204 0.5041
1 0.6010 0.2019 0.1214 0.1051
2 0.5204 0.1214 0.0408 N/A
3 0.5041 0.1051 N/A N/A

Fig. 8. The procedure to calculate the matching score between DOCs.
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palmprint images were also available in the database. Fig. 9 shows
some palmprint images from three types of palmprint databases.

5.2. Palmprint verification

Verification is a one-to-one comparison which determines
whether two samples are from the same class or not. In

palmprint verification, each palmprint image in database is
compared with every other samples in database. The matching
is counted as genuine matching if both samples are from the
same palm, otherwise, the matching is viewed as imposter
matching. In the PolyU palmprint database, there are 3740
samples. So the total matching is 3740n3739/2¼6,991,930, and
there are 374n45¼16,830 genuine matching (each class has 45
genuine matching) and 6,975,100 imposter matching. There are

Fig. 9. Examples from there types of palmprint database: (a) is from the PolyU database. (b)–(e) are palmprint images from the Red, Green, Blue, and NIR database,
respectively; (f) is a palmprint image from the IITD database; and (g) is the ROI of (f).

Fig. 10. The matching score distributions obtained using the DOC approach: (a) depicts the distributions of the genuine matching scores and the imposter matching score on
PolyU database; (b)–(e) depict distributions of the matching score on Red, Green, Blue, and NIR spectral databases; and (f) plots the matching score distributions on IITD
database.
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6000 samples in each spectral database. So 6000n5999/
2¼17,997,000 matching totally are performed for each spectral
database, and the genuine matching and imposter matching
number are 33,000 and 17,964,000. For the IITD database, there
are 4600 genuine matching and 100,970 imposter matching.
Fig. 10 shows the distributions of genuine matching score and
imposter matching score on the PolyU, Red, Green, Blue, NIR, and
IITD databases, respectively. It can be observed that the genuine
matching score and imposter matching score have highly

separate distributions on both the PolyU and multispectral
databases. A linear classifier would be able to distinguish the
genuine and imposter classes. The distributions of genuine
matching and imposter matching on the IITD database are not
as separate as that on the PolyU database. The main reason is
that the palmprint images on the IITD database are serious
variations in rotation and translation.

In the palmprint verification, False Reject Rate (FRR), False
Accept Rate (FAR) and Equal Error Rate (EER) [2] were used to

Fig. 11. The ROC curves of different approaches on different types of databases: (a) depicts the ROC curves on PolyU database; (b)–(e) depict ROC curves on Red, Green, Blue
and NIR spectral databases; and (f) is the ROC curves on IITD database.
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Table 2
The EERs (%) of different approaches on each palmprint database.

EERs Comp code Ordi code Fusn code Palm code BOCV EBOCV RLOC DOC

PolyU 0.0122 0.0150 0.0155 0.0432 0.0149 0.0203 0.0180 0.0092
Red 0.0145 0.0161 0.0179 0.0297 0.0186 0. 0313 0.0223 0.0119
Green 0.0168 0.0202 0.0216 0.0507 0.0232 0.0303 0.0249 0.0146
Blue 0.0170 0.0202 0.0212 0.0463 0.0207 0.0225 0.0203 0.0146
NIR 0.0137 0.0180 0.0213 0.0332 0.0284 0.0510 0.0208 0.0121
IITD 0.0696 0.0744 0.0878 0.0933 0.0708 0.0671 0.0826 0.0622

Fig. 12. Palmprint identification error rate: (a) depicts the error rate on PolyU database; (b)–(e) plots the error rate on Red, Green, Blue, and NIR spectral databases; and (f) is
the error rates on IITD database.
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evaluate the performance of the proposed approach. A matching
was counted as correct if the crossing matching score was larger
than the threshold, otherwise, the matching was treated as
incorrect. For the purpose of analysis, this threshold was con-
sidered to be the operating point of FRR, FAR and EER. The
Receiver Operating Characteristic (ROC) curve, which is a graph of
false reject rate versus false acceptance rate for all possible
operating points, was introduced to describe the performance
of the palmprint recognition approach. The ROC curves of the
DOC approach on three types of palmprint databases are shown
in Fig. 11. The ROC curve produced by other approaches, including
the Competitive code (Compcode), Ordinal code (Ordicode),
Fusion code (Fusncode), RLOC, BOCV, and E-BOCV approaches,
are also shown in Fig. 11. The ROC curve of the Palmcode is not
plotted in the figure for its FAR and FRR are obviously higher than
other approaches. It can be seen that our approach can achieves
the lowest FRR against the same FAR on all databases. The
corresponding EERs are presented in Table 2. One can see that
the DOC approach achieves the smallest EER among all coding
approaches.

5.3. Palmprint identification

Identification is a one-against-many comparison process
which answers the question of which class of the query sample
is. In palmprint identification, the first “TRAIN” palmprint image
(s) from each class is/are employed as the training sample and
the remaining palmprint images from the testing set. The
sample in the testing set is compared with all samples in the
training set to produce the DOC matching scores. The testing

sample will be classified to the class of the training sample that
produces the highest matching score with the testing sample.
Several state-of-the-art coding based approaches, such as the
Competitive code, Ordinal code, Fusion code, Palmcode, BOCV,
E-BOCV, and RLOC approaches are also implemented to com-
pare with the DOC approach. In the Competitive code approach,
the smaller matching score between two competitive code
means the more similarity between two samples. So the class
of training sample that produce the smallest competitive code
matching score will be treated as the class of the testing
sample. Other coding based approaches also adopt the same
rule as the competitive code approach. The experimental
results are shown in Fig. 12, where the error rate is the rate of
the number of testing samples that are classified to incorrect
class by the number of all testing samples. For the clarity of the
presentations, the comparative experimental results with
TRAIN¼1 and 2 are summarized in Tables 3 and 4, respectively.
In addition, the DOC approach using twelve Gabor filters is also
implemented.

It can be seen that the proposed DOC approach achieves the
lowest identification error rate among all coding approaches on
each palmprint database. Generally, the DOC with nθ¼12 usually
performs better than that with nθ¼6. The main reason is that
using more filters should extract more accurate orientation feature
of the palmprint.

5.4. Comparison with the hamming distance metric

To evaluate the efficiency of the nonlinear matching score
scheme, the hamming distance metric is also used to perform
double-orientation code matching. The identification error rates
obtained by “DOC with hamming metric” approach (TRAIN¼1) are
listed in Table 5. Compared with the results presented in Table 3, it
can be seen that the using of nonlinear matching scheme performs
much better than using the hamming distance metric with both
nθ¼6 and nθ¼12. Thus, it can be concluded that the nonlinear
matching scheme is suitable for the double-orientation code
matching.

5.5. Computational complexity

In this section, we compare the computational complexity of
DOC approach with conventional coding based approaches. Since
the number of Gabor filters used in DOC (nθ¼6) is same as other
coding based approaches that use six filters, such as the Compe-
titive code, BOCV and E-BOCV approaches, the convolution
computation of DOC is also same as these approaches. Thus,
the time cost of code extraction in the DOC approach should be
similar with those of the Competitive code, BOCV, and E-BOCV
approaches. In the code matching processing of the DOC
approach, it should be noted that the distance between two
DOC is numerated. So the matching score between two “single-
orientation code” just need to be calculated only once, which
were listed in Table 1. Thus, the speed of matching score

Table 3
The palmprint identification error rates (%) (train¼1).

Err
rates

Comp
code

Ordi
code

Fusn
code

Palm
code

BOCV EBOCV RLOC DOC
(nθ¼6)

DOC
(nθ¼12)

PolyU 3.57 4.81 4.10 3.86 3.09 2.61 6.83 2.55 2.47
Red 5.35 6.31 6.65 6.44 5.36 5.45 9.90 4.55 4.49
Green 5.64 7.49 8.05 8.62 6.44 5.85 10.69 5.07 4.71
Blue 5.47 7.29 7.49 8.73 5.89 4.69 9.13 5.02 4.67
NIR 4.85 6.00 7.40 7.53 8.00 8.98 9.29 3.91 3.89
IITD 34.89 38.86 40.38 49.40 32.88 32.65 45.43 32.23 31.95

Table 4
The palmprint identification error rates (%) (train¼2).

Err
rates

Comp
code

Ordi
code

Fusn
code

Palm
code

BOCV EBOCV RLOC DOC
(nθ¼6)

DOC
(nθ¼12)

PolyU 1.20 1.84 1.60 2.54 0.97 0.84 2.67 0.67 0.73
Red 1.82 2.20 2.38 3.88 2.24 2.28 3.74 1.30 1.36
Green 2.14 2.98 3.36 8.42 2.88 2.48 4.40 1.84 1.46
Blue 2.24 2.92 3.18 6.50 2.58 2.02 3.47 1.82 1.62
NIR 1.46 2.04 2.72 4.12 3.44 3.70 3.50 1.06 1.16
IITD 25.36 27.46 29.49 36.74 22.61 21.57 32.54 21.23 21.30

Table 6
computational costs of different approaches.

Approaches Code ext Matching Approaches Code ext Matching

DOC 410 ms 102 ms BOCV 395 ms 11 ms
Competitive code 383 ms 41 ms E-BOCV 412 ms 36 ms
Ordinal code 196 ms 67 ms RLOC 6.680 s 437 ms
Fusion code 40 ms 5 ms Palmcode 19 ms 3 ms

Table 5
The palmprint identification error rates (%) obtained using the hamming distance
metric.

Err rates PolyU Red Green Blue NIR IITD

DOC (nθ¼6) 2.59 4.61 5.13 5.05 3.97 31.95
DOC (nθ¼12) 2.79 4.82 5.24 4.98 4.25 32.87
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calculation for “single-orientation code” is also fast. It should be
noticed that the DOC consists two “single-orientation code”. So
the computational cost in DOC matching stage should be
a little more than those of the competitive code, BOCV, and
E-BOCV approaches. To facilitate comparison with other coding
approaches, several state-of-the-art coding approaches and the
DOC approach are implemented by using MATLAB 8.1.0 on a PC
with double-core Intel(R) i5-3470 (3.2 GHz), RAM 8.00 GB, and
Windows 7.0 operating system. Code extraction and matching
between two palmprints are performed for 10 times and the
time taken in each phase is shown in Table 6. The code extraction
time taken in the DOC approach is about 410 ms, which is
comparable to the competitive code, BOCV, and E-BOCV
approaches. The matching time of DOC is longer than those of
other coding approaches but it is still sufficient for the practical
application.

6. Conclusions

Orientation coding based palmprint recognition approaches
consists of two main steps: palmprint orientation feature extrac-
tion and orientation feature matching. Using a reasonable orienta-
tion coding scheme and designing an effective coding based
matching algorithm are two important issues in the coding based
approaches. This paper analyzes the orientation feature extraction
by using discrete filters and proposes a double-orientation code
(DOC) extraction approach. The DOC can correctly and robustly
represent the palmprint orientation feature. The distance between
DOCs is evaluated by using a nonlinear matching score approach.
It has been verified that the nonlinear angular matching score
approach is more effective than the conventional hamming
distance metric in evaluating the similarity of DOC. The proposed
DOC approach can achieve significantly higher palmprint verifica-
tion and identification accuracy than previous state-of-the-art
coding approaches.
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